Constructing symmetry-adapted basis

Constructing symmetry-adapted basis#

A typical procedure to use irreps is as follows:

  1. Define an action of symmetry operations of a space group \(\mathcal{G}\) on your interested objects

  2. Fourier-transform your selected basis \(\{ \phi^{(\mathbf{k})}_{i} \}_{\mathbf{k}, i}\) such that

    \[\begin{split} g \phi^{(\mathbf{k})}_{j} &= \sum_{i} \phi^{(\mathbf{k})}_{i} \Gamma^{(\mathbf{k})}_{ij} \quad (g \in \mathcal{G}^{\mathbf{k}}) \\ \mathbf{\Gamma}^{(\mathbf{k})}((\mathbf{E}, \mathbf{t})) &= e^{ -i\mathbf{k}\cdot\mathbf{t} } \mathbf{1} \quad ( (\mathbf{E}, \mathbf{t}) \in \mathcal{G}^{\mathbf{k}}) \\\end{split}\]
  3. Compute unitary small representations \(\Gamma^{ (\mathbf{k}, \alpha) }\) of little group \(\mathcal{G}^{\mathbf{k}}\) by spgrep.get_spacegroup_irreps_from_primitive_symmetry() in primitive cell

  4. Apply projection operator by spgrep.representation.project_to_irrep()

Projection operator#

Let \(\Delta^{(\alpha)}\) be unitary projective irrep of group \(G\) with \(\mu(E, E)=1\). The projection operator can be defined as the same form with the ordinary representation [Alt89] [1],

\[ P^{(\alpha)}_{ij} := \frac{ d_{\alpha} }{|G|} \sum_{ R \in G } \Delta^{ (\alpha) }(R)_{ij}^{\ast} R. \]
Let \(\phi^{(\alpha,j)}_{i} := P^{(\alpha)}_{ij} \phi\). Basis vectors \(\{ \phi^{(\alpha,j)}_{i} \}_{i}\) forms \(\Delta^{ (\alpha) }\).

\[\begin{split} P^{(\alpha)}_{ij} P^{(\alpha)}_{i'j'} &= \frac{ d_{\alpha}^{2} }{|G|^{2}} \sum_{ R, R' \in G } \Delta^{ (\alpha) }(R)_{ij}^{\ast} \Delta^{ (\alpha) }(R)_{i'j'}^{\ast} RR' \\ &= \frac{ d_{\alpha}^{2} }{|G|^{2}} \sum_{ R, T \in G } \sum_{l} \frac{ \mu(R, R^{1})\mu(R, R^{-1}T) }{ \mu(R^{-1}, T) } \Delta^{ (\alpha) }(R)_{ij}^{\ast} \Delta^{ (\alpha) }(R)_{li'} \Delta^{ (\alpha) }(T)_{lj'}^{\ast} T \\ &= \delta_{ji'} \frac{ d_{\alpha} }{|G|} \sum_{ T \in G } \Delta^{ (\alpha) }(T)_{ij'}^{\ast} T \quad (\because \mu(E, T) = 1) \\ &= \delta_{ji'} P^{(\alpha)}_{ij'} \\ P^{(\alpha) \dagger}_{ij} &= P^{(\alpha)}_{ji} \\ \end{split}\]

Basis vectors \(\{ \phi^{(\alpha,j)}_{i} \}_{i}\) are mutually orthogonal:

\[\begin{split} ( \phi^{(\alpha,j)}_{i}, \phi^{(\alpha,j)}_{i'} ) &= (P^{(\alpha)}_{ij}\phi, P^{(\alpha)}_{i'j}\phi) \\ &= (\phi, P^{(\alpha)}_{ji}P^{(\alpha)}_{i'j}\phi) \\ &= \delta_{ii'}(\phi, P^{(\alpha)}_{jj}\phi) \\ &= \delta_{ii'}(\phi, \phi^{(\alpha, j)}_{j}). \end{split}\]

References#

[Alt89]

S. L. Altmann. Projection operators and clebsch–gordan coefficients for projective representations. Int. J. Quantum Chem., 35(3):441–456, 1989. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.560350309, doi:https://doi.org/10.1002/qua.560350309.