Constructing symmetry-adapted basis#
A typical procedure to use irreps is as follows:
Define an action of symmetry operations of a space group \(\mathcal{G}\) on your interested objects
Fourier-transform your selected basis \(\{ \phi^{(\mathbf{k})}_{i} \}_{\mathbf{k}, i}\) such that
\[\begin{split} g \phi^{(\mathbf{k})}_{j} &= \sum_{i} \phi^{(\mathbf{k})}_{i} \Gamma^{(\mathbf{k})}_{ij} \quad (g \in \mathcal{G}^{\mathbf{k}}) \\ \mathbf{\Gamma}^{(\mathbf{k})}((\mathbf{E}, \mathbf{t})) &= e^{ -i\mathbf{k}\cdot\mathbf{t} } \mathbf{1} \quad ( (\mathbf{E}, \mathbf{t}) \in \mathcal{G}^{\mathbf{k}}) \\\end{split}\]Compute unitary small representations \(\Gamma^{ (\mathbf{k}, \alpha) }\) of little group \(\mathcal{G}^{\mathbf{k}}\) by
spgrep.get_spacegroup_irreps_from_primitive_symmetry()
in primitive cellApply projection operator by
spgrep.representation.project_to_irrep()
Projection operator#
Let \(\Delta^{(\alpha)}\) be unitary projective irrep of group \(G\) with \(\mu(E, E)=1\). The projection operator can be defined as the same form with the ordinary representation [Alt89] [1],
Basis vectors \(\{ \phi^{(\alpha,j)}_{i} \}_{i}\) are mutually orthogonal:
References#
S. L. Altmann. Projection operators and clebsch–gordan coefficients for projective representations. Int. J. Quantum Chem., 35(3):441–456, 1989. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.560350309, doi:https://doi.org/10.1002/qua.560350309.