Memo#
Bloch sphere#
Consider a spinor \(\psi_{\uparrow}(\mathbf{r})\ket{\uparrow} + \psi_{\downarrow}(\mathbf{r})\ket{\downarrow}\) with \(|\psi_{\uparrow}(\mathbf{r})|^{2} + |\psi_{\downarrow}(\mathbf{r})|^{2} = 1\).
The following construction maps the spinor to a point \(\left( m_{x}(\mathbf{r}), m_{y}(\mathbf{r}), m_{z}(\mathbf{r}) \right) \in S^{2}\):
Symmetry-adapted tensor with intrinsic symmetry#
Ref. [EBW08]
Consider vector space \(V\) and its symmetry adapted basis \(\{ \mathbf{f}^{\alpha m}_{i} \}\) w.r.t. group \(G\).
Action of \(G\) on rank-\(p\) tensor \(\mathsf{T}: V^{\ast \otimes p}\) is defined as
References#
Simon L Altmann. Rotations, quaternions, and double groups. Courier Corporation, 2005.
Michael El-Batanouny and Frederick Wooten. Symmetry and condensed matter physics: a computational approach. Cambridge University Press, 2008.
D. Hobbs, G. Kresse, and J. Hafner. Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B, 62:11556–11570, Nov 2000. URL: https://link.aps.org/doi/10.1103/PhysRevB.62.11556, doi:10.1103/PhysRevB.62.11556.
Soner Steiner, Sergii Khmelevskyi, Martijn Marsmann, and Georg Kresse. Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered $\mathrm Fe_1\ensuremath -x\mathrm Co_x$ alloys. Phys. Rev. B, 93:224425, Jun 2016. URL: https://link.aps.org/doi/10.1103/PhysRevB.93.224425, doi:10.1103/PhysRevB.93.224425.
D.B. Westra. SU(2) and SO(3). https://www.mat.univie.ac.at/ westra/so3su2.pdf.