Physically irreducible representation (PIR)#

Let \((\Gamma, \mathrm{Span}_{\mathbb{C}} \{ \mathbf{v}_{i} \}_{i=1}^{d} )\) be a unitary (projective) irrep of group \(G\). Then, its conjugate (projective) representation is \((\Gamma^{\ast}, \mathrm{Span}_{\mathbb{C}} \{ \mathbf{v}_{i}^{\ast} \}_{i=1}^{d} )\). There are three cases for \(\Gamma\) and \(\Gamma^{\ast}\):

  1. \(\Gamma\) is real: \(\Gamma\) and \(\Gamma^{\ast}\) are equivalent and can be taken as real matrices.

  2. \(\Gamma\) is pseudo-real: \(\Gamma\) and \(\Gamma^{\ast}\) are equivalent but can be taken as real matrices.

  3. \(\Gamma\) is not equivalent to \(\Gamma^{\ast}\).

These cases are classified with Frobenius-Schur indicator:

\[\begin{split} \frac{1}{|G|} \sum_{ g \in G } \chi(g^{2}) = \begin{cases} 1 & \mbox{($\Gamma$ is real)} \\ -1 & \mbox{($\Gamma$ is pseudo-real)} \\ 0 & \mbox{($\Gamma$ is not equivalent to $\Gamma^{\ast}$)} \\ \end{cases}. \end{split}\]

We sometimes need to restrict irrep under a vector space over \(\mathbb{R}\) (instead of \(\mathbb{C}\)), which is called physically irreducible representation (PIR) [SHW91].

PIR of finite group#

(1) \(\Gamma\) is real#

The following construction is based on Ref. [ITO96].

In this case, since \(\Gamma\) and \(\Gamma^{\ast}\) are equivalent, there exists a symmetric unitary matrix with

\[\begin{split} \mathbf{\Gamma}(g) \mathbf{U} &= \mathbf{U} \mathbf{\Gamma}(g)^{\ast} \\ \mathbf{U}^{\dagger} \mathbf{U} &= \mathbf{1} \\ \mathbf{U}^{\top} &= \mathbf{U}. \end{split}\]
We impose \(\det \mathbf{U} = 1\) additionally to specify the intertwiner uniquely. The intertwiner can be numerically computed as shown in here.

The symmetric unitary matrix \(\mathbf{U}\) can be diagonalized with real orthogonal matrix \(\mathbf{S}\) as \(\mathbf{U} = \mathbf{S}^{-1} \mathbf{\Omega} \mathbf{S}\) [1]. For this symmetric unitary matrix \(\mathbf{U}\), we can choose its square root with

\[\begin{split} \mathbf{T} &:= \mathbf{S}^{-1} \mathbf{\Omega}^{1/2} \mathbf{S} \\ \mathbf{T}^{2} &= \mathbf{U} \\ \mathbf{T}^{\dagger} \mathbf{T} &= \mathbf{1} \\ \mathbf{T}^{\top} &= \mathbf{T}. \end{split}\]

A transformed representation \(\mathbf{\Gamma}'(g) := \mathbf{T}\mathbf{\Gamma}(g)\mathbf{T}^{-1}\) is real because

\[\begin{split} \mathbf{\Gamma}'(g) &= \mathbf{T} \mathbf{U}^{-1} \mathbf{\Gamma}(g)^{\ast} \mathbf{U} \mathbf{T}^{-1} \\ &= \mathbf{T}^{-1} \mathbf{\Gamma}(g)^{\ast} \mathbf{T} \\ &= \mathbf{\Gamma}'(g)^{\ast}. \end{split}\]

(2, 3) \(\Gamma\) is pseudo-real or not equivalent to \(\Gamma^{\ast}\)#

In these cases, we can transform conjugated basis pair to real vectors by unitary matrix:

\[\begin{split} (\mathbf{v}_{1}, \cdots, \mathbf{v}_{d}, \mathbf{v}_{1}^{\ast}, \cdots, \mathbf{v}_{d}^{\ast}) \mathbf{U} &= \sqrt{2} (\mathrm{Re}\, \mathbf{v}_{1}, \cdots, \mathrm{Re}\, \mathbf{v}_{d}, \mathrm{Im}\, \mathbf{v}_{1}, \cdots, \mathrm{Im}\, \mathbf{v}_{d}) \\ \mathbf{U} &:= \frac{1}{\sqrt{2}}\begin{pmatrix} \mathbf{1}_{d} & -i \mathbf{1}_{d} \\ \mathbf{1}_{d} & i \mathbf{1}_{d} \\ \end{pmatrix} \quad (\mathrm{Unitary}) \\ \mathbf{U}^{-1} \begin{pmatrix} \mathbf{D}(g) & \\ & \mathbf{D}(g)^{\ast} \end{pmatrix} \mathbf{U} &= \begin{pmatrix} \mathrm{Re}\, \mathbf{D}(g) & \mathrm{Im}\, \mathbf{D}(g) \\ -\mathrm{Im}\, \mathbf{D}(g) & \mathrm{Re}\, \mathbf{D}(g) \\ \end{pmatrix} \quad (g \in G) \end{split}\]

PIR of space group \(\mathcal{G}\)#

Next, we consider to construct PIR of space group from small representation \(\Gamma^{\mathbf{k}\alpha}\) at \(\mathbf{k}\) [SCC13].

Frobenius-Schur indicator for space-group representations#

Let \(\Gamma^{(\mathbf{k}, 0)}\) and \(\Gamma^{(\mathbf{k}, 1)}\) be representations of space group \(\mathcal{G}\) with \(\mathbf{k}\) vector. Let \(\mathcal{T}\) be a translational subgroup of \(\mathcal{G}\). Consider coset representatives of little group of \(\mathbf{k}\) over \(\mathcal{T}\):

\[ \mathcal{G}^{\mathbf{k}} = \coprod_{ \{ i \mid \mathbf{S}_{i} \in \overline{\mathcal{G}}^{\mathbf{k}} \} } (\mathbf{S}_{i}, \mathbf{w}_{i}) \mathcal{T}. \]

Then sum over translations in \(\mathcal{G}^{\mathbf{k}}\):

\[\begin{split} \frac{1}{|\mathcal{G}^{\mathbf{k}}|} \sum_{ g \in \mathcal{G}^{\mathbf{k}} } \chi^{\mathbf{k}}(g^{2}) &= \frac{1}{N} \sum_{ \mathbf{t} } \sum_{ \{ i \mid \mathbf{S}_{i} \in \overline{\mathcal{G}}^{\mathbf{k}} \} } \chi^{\mathbf{k}}\left( (\mathbf{E}, \mathbf{t})(\mathbf{S}_{i}, \mathbf{w}_{i}) (\mathbf{E}, \mathbf{t})(\mathbf{S}_{i}, \mathbf{w}_{i}) \right) \\ &= \frac{1}{N} \sum_{ \mathbf{t} } \sum_{ \{ i \mid \mathbf{S}_{i} \in \overline{\mathcal{G}}^{\mathbf{k}} \} } \chi^{\mathbf{k}}\left( (\mathbf{E}, \mathbf{t} + \mathbf{S}_{i}\mathbf{t})(\mathbf{S}_{i}, \mathbf{w}_{i})^{2} \right) \\ &= \left( \frac{1}{N} \sum_{ \mathbf{t} } e^{-i \mathbf{k} \cdot (\mathbf{t} + \mathbf{S}_{i}\mathbf{t}) } \right) \left( \sum_{ \{ i \mid \mathbf{S}_{i} \in \overline{\mathcal{G}}^{\mathbf{k}} \} } \chi^{\mathbf{k}}\left( (\mathbf{S}_{i}, \mathbf{w}_{i})^{2} \right) \\ \right) \\ &= \mathbb{I}\left[ 2\mathbf{k} \equiv \mathbf{0} \right] \cdot \sum_{ \{ i \mid \mathbf{S}_{i} \in \overline{\mathcal{G}}^{\mathbf{k}} \} } \chi^{\mathbf{k}}\left( (\mathbf{S}_{i}, \mathbf{w}_{i})^{2} \right), \end{split}\]
where \(\mathbb{I}[C]\) takes one if the condition \(C\) is true and takes zero otherwise. Here we use \(\mathbf{S}_{i}^{\top} \in \overline{\mathcal{G}}^{\mathbf{k}}\) as
\[\begin{split} \frac{1}{N} \sum_{ \mathbf{t} } e^{-i \mathbf{k} \cdot (\mathbf{t} + \mathbf{S}_{i}\mathbf{t}) } &= \frac{1}{N} \sum_{ \mathbf{t} } e^{-i (\mathbf{E} + \mathbf{S}_{i})^{\top} \mathbf{k} \cdot \mathbf{t} } \\ &= \mathbb{I} \left[ (\mathbf{E} + \mathbf{S}_{i})^{\top} \mathbf{k} \equiv \mathbf{0} \right] \\ &= \mathbb{I} \left[ \mathbf{k} + \mathbf{S}_{i}^{\top} \mathbf{k} \equiv \mathbf{0} \right] \\ &= \mathbb{I} \left[ 2\mathbf{k} \equiv \mathbf{0} \right]. \end{split}\]

(1) \(\Gamma^{\mathbf{k}\alpha}\) is real#

At first, we need to find an intertwiner

\[ \mathbf{\Gamma}^{\mathbf{k}\alpha}(g) \mathbf{U} = \mathbf{U} \mathbf{\Gamma}^{\mathbf{k}\alpha}(g)^{\ast}. \]
Because we can assume \(2\mathbf{k} \equiv \mathbf{0}\) in this case, the following matrix is an intertwiner:
\[\begin{split} \mathbf{U} &:= \frac{1}{N} \sum_{ \mathbf{t} } \sum_{ \{ i \mid \mathbf{S}_{i} \in \overline{\mathcal{G}}^{\mathbf{k}} \} } \mathbf{\Gamma}^{\mathbf{k}\alpha}\left( (\mathbf{E}, \mathbf{t})(\mathbf{S}_{i}, \mathbf{w}_{i}) \right) \mathbf{B} \mathbf{\Gamma}^{\mathbf{k}\alpha}\left( (\mathbf{E}, \mathbf{t})(\mathbf{S}_{i}, \mathbf{w}_{i}) \right)^{\ast \dagger} \\ &= \left( \frac{1}{N} \sum_{ \mathbf{t} } e^{2i\mathbf{k}\cdot\mathbf{t}} \right) \sum_{ \{ i \mid \mathbf{S}_{i} \in \overline{\mathcal{G}}^{\mathbf{k}} \} } \mathbf{\Gamma}^{\mathbf{k}\alpha}\left( (\mathbf{S}_{i}, \mathbf{w}_{i}) \right) \mathbf{B} \mathbf{\Gamma}^{\mathbf{k}\alpha}\left( (\mathbf{S}_{i}, \mathbf{w}_{i}) \right)^{\ast \dagger} \\ &= \sum_{ \{ i \mid \mathbf{S}_{i} \in \overline{\mathcal{G}}^{\mathbf{k}} \} } \mathbf{\Gamma}^{\mathbf{k}\alpha}\left( (\mathbf{S}_{i}, \mathbf{w}_{i}) \right) \mathbf{B} \mathbf{\Gamma}^{\mathbf{k}\alpha}\left( (\mathbf{S}_{i}, \mathbf{w}_{i}) \right)^{\ast \dagger} \quad (\because 2\mathbf{k} \cdot \mathbf{t} \in \mathbb{Z}) \\ \end{split}\]

(2, 3) \(\Gamma^{\mathbf{k}\alpha}\) is pseudo-real or not equivalent to \(\Gamma^{\mathbf{k}\alpha \ast}\)#

In these cases, we can transform conjugated basis pair to real vectors by unitary matrix:

\[\begin{split} (\mathbf{v}_{1}, \cdots, \mathbf{v}_{d}, \mathbf{v}_{1}^{\ast}, \cdots, \mathbf{v}_{d}^{\ast}) \mathbf{U} &= \sqrt{2} (\mathrm{Re}\, \mathbf{v}_{1}, \cdots, \mathrm{Re}\, \mathbf{v}_{d}, \mathrm{Im}\, \mathbf{v}_{1}, \cdots, \mathrm{Im}\, \mathbf{v}_{d}) \\ \mathbf{U} &:= \frac{1}{\sqrt{2}}\begin{pmatrix} \mathbf{1}_{d} & -i \mathbf{1}_{d} \\ \mathbf{1}_{d} & i \mathbf{1}_{d} \\ \end{pmatrix} \quad (\mathrm{Unitary}) \\ \tilde{\mathbf{\Gamma}}^{\mathbf{k}\alpha}(g) &:= \mathbf{U}^{-1} \begin{pmatrix} \mathbf{\Gamma}^{\mathbf{k}\alpha}(g) & \\ & \mathbf{\Gamma}^{\mathbf{k}\alpha}(g)^{\ast} \end{pmatrix} \mathbf{U} \\ &= \begin{pmatrix} \mathrm{Re}\, \mathbf{\Gamma}^{\mathbf{k}\alpha}(g) & \mathrm{Im}\, \mathbf{\Gamma}^{\mathbf{k}\alpha}(g) \\ -\mathrm{Im}\, \mathbf{\Gamma}^{\mathbf{k}\alpha}(g) & \mathrm{Re}\, \mathbf{\Gamma}^{\mathbf{k}\alpha}(g) \\ \end{pmatrix} \quad (g \in \mathcal{G}) \end{split}\]

In particular, for translation \((\mathbf{E}, \mathbf{t}) \in \mathcal{G}\),

\[\begin{split} \tilde{\mathbf{\Gamma}}^{\mathbf{k}\alpha}( (\mathbf{E}, \mathbf{t}) ) &= \begin{pmatrix} \cos (\mathbf{k} \cdot \mathbf{t}) \mathbf{1}_{d} & -\sin (\mathbf{k} \cdot \mathbf{t}) \mathbf{1}_{d} \\ \sin (\mathbf{k} \cdot \mathbf{t}) \mathbf{1}_{d} & \cos (\mathbf{k} \cdot \mathbf{t}) \mathbf{1}_{d} \\ \end{pmatrix} \end{split}\]

References#

[ITO96]

Teturo Inui, Yukito Tanabe, and Yositaka Onodera. Group theory and its applications in physics. Springer Series in Solid-State Sciences. Springer, Berlin, Germany, March 1996.

[SCC13]

Harold T. Stokes, Branton J. Campbell, and Ryan Cordes. Tabulation of irreducible representations of the crystallographic space groups and their superspace extensions. Acta Cryst. A, 69(4):388–395, Jul 2013. URL: https://doi.org/10.1107/S0108767313007538, doi:10.1107/S0108767313007538.

[SHW91]

Harold T. Stokes, Dorian M. Hatch, and James D. Wells. Group-theoretical methods for obtaining distortions in crystals: applications to vibrational modes and phase transitions. Phys. Rev. B, 43:11010–11018, May 1991. URL: https://link.aps.org/doi/10.1103/PhysRevB.43.11010, doi:10.1103/PhysRevB.43.11010.