Group#
- spgrep.group.get_cayley_table(rotations, time_reversals=None)[source]#
Calculate Group multiplication table.
- Parameters:
rotations (array[int], (order, 3, 3))
time_reversals ((Optional) array[int], (order, ))
- Returns:
table –
table[i, j] = k
ifrotations[i] @ rotations[j] == rotations[k]
- Return type:
(order, order)
- spgrep.group.get_factor_system_from_little_group(little_rotations, little_translations, kpoint)[source]#
Calculate factor system of projective representation of little co-group.
\[D^{\mathbf{k}}_{p}(S_{i}) D^{\mathbf{k}}_{p}(S_{j}) = \exp \left( -i \mathbf{g}_{i} \cdot \mathbf{w}_{j} \right) D^{\mathbf{k}}_{p}(S_{k})\]where \(S_{i}S_{j} = S_{k}\) and \(\mathbf{g}_{i} = S_{i}^{-1} \mathbf{k} - \mathbf{k}\).
- Parameters:
little_rotations (array, (order, 3, 3)) – Linear parts of coset of little group stabilizing
kpoint
.little_translations (array, (order, 3)) – Translation parts of coset of little group stabilizing
kpoint
.kpoint (array, (3, ))
- Returns:
factor_system – Factor system of representations of little co-group that have one-to-one correspondence to small representations
- Return type:
array, (order, order)
- spgrep.group.get_little_group(rotations, translations, kpoint, atol=1e-08)[source]#
Return coset of little group of given space group which stabilize kpoint under rotations.
- Parameters:
rotations (array, (order, 3, 3))
translations (array, (order, 3))
kpoint (array, (3, ))
- Returns:
little_rotations (array, (little_group_order, 3, 3))
little_translations (array, (little_group_order, 3))
mapping_little_group (array, (little_group_order, )) – Let
i = mapping_little_group[idx]
.(rotations[i], translations[i])
belongs to the little group of given space space group and kpoint.
- spgrep.group.decompose_by_maximal_space_subgroup(rotations, translations, time_reversals)[source]#
Coset-decompose magnetic space group \(M\) by its maximal space subgroup (XSG) \(D(M)\).
If given magnetic space group is type I, return None.
\[M = D(M) \sqcup D(M) a_{0}\]
- Returns:
xsg_indices (list[int]) – List of indices for XSG
time_reversal_indices (list[int]) – Let
xsg_indices[i]
= \((\mathbf{W}_{i}, \mathbf{w}_{i})\). Then,time_reversal_indices[i]
\(\equiv (\mathbf{W}_{i}, \mathbf{w}_{i}) a_{0}\).a0_idx (int) – Index of \(a_{0}\) in given list of symmetries