Co-representation of magnetic point and space group#

Refs: [WPV18, Wig59]

Anti-linear operator#

Let \(V\) be a vector space over \(\mathbb{C}\) that operators in \(M\) act. An anti-unitary operator \(a \in M\) satisfies

\[ a (c_{1} \psi_{1} + c_{2} \psi_{2}) = c_{1}^{\ast} a\psi_{1} + c_{2}^{\ast} a\psi_{2} \]
for \(c_{1}, c_{2} \in \mathbb{C}\) and \(\psi_{1}, \psi_{2} \in V\).

Definition#

Let \(M\) be magnetic point group other than type I. Let \(D\) be a maximal point subgroup of \(M\). Then, \(M\) can be decomposed as \(M = D \sqcup a_{0} D\), where \(a_{0}\) is an antisymmetry operation.

A co-representation \(\Gamma\) gives linear or anti-linear operator for each element in \(M\) while satisfying

\[\begin{split} \mathbf{\Gamma}(u) \mathbf{\Gamma}(u') &= \omega(u, u') \mathbf{\Gamma}(uu') \\ \mathbf{\Gamma}(u) \mathbf{\Gamma}(a') &= \omega(u, a') \mathbf{\Gamma}(ua') \\ \mathbf{\Gamma}(a) \mathbf{\Gamma}(u')^{\ast} &= \omega(a, u') \mathbf{\Gamma}(au') \\ \mathbf{\Gamma}(a) \mathbf{\Gamma}(a')^{\ast} &= \omega(a, a') \mathbf{\Gamma}(aa'), \\ \end{split}\]
where \(u, u' \in D\) and \(a, a' \in a_{0}D\). The factor system \(\omega\) satisfies a cocycle condition:
\[\begin{split} \omega(u, m) \omega(um, m') &= \omega(u, mm') \omega(m, m') \\ \omega(a, m) \omega(am, m') &= \omega(a, mm') \omega(m, m')^{\ast} \\ \end{split}\]
for \(u \in D\), \(a \in a_{0}D\), and \(m, m \in M\) [1].

Co-representations \(\Gamma\) and \(\Gamma'\) are equivalent if an invertible matrix \(\mathbf{T}\) exists such that

\[\begin{split} \mathbf{\Gamma}'(u) &= \mathbf{T}^{-1} \mathbf{\Gamma}(u) \mathbf{T} \quad (u \in D) \\ \mathbf{\Gamma}'(a) &= \mathbf{T}^{-1} \mathbf{\Gamma}(a) \mathbf{T}^{\ast} \quad (a \in a_{0}D) \\ \end{split}\]

Frobenius-Schur indicator for co-representation#

Let \((\Gamma, \mathrm{Span}_{\mathbb{C}} \{ \mathbf{\phi}_{i} \}_{i=1}^{d} )\) be one of unitary irreps for \(D\) with factor system \(\omega\). Then, \(\{ a_{0} \mathbf{v}_{i} \}_{i}\) also form irrep as

\[\begin{split} \overline{\mathbf{\Gamma}}(u) &:= \frac{ \omega(u, a_{0}) }{ \omega( a_{0}, a_{0}^{-1} u a_{0} ) } \mathbf{\Gamma}( a_{0}^{-1} u a_{0} )^{\ast} \quad (u \in D) \\ u a_{0} \mathbf{\phi}_{j} &= \sum_{j} a_{0} \mathbf{\phi}_{j} \overline{\mathbf{\Gamma}}(u)_{ij}. \end{split}\]

The following Frobenius-Schur indicator should be one of \(\{ -1, 0, 1 \}\):

\[\begin{split} \xi^{\alpha} &:= \frac{1}{|D|} \sum_{ u \in D } \omega(a_{0}u, a_{0}u) \chi( (a_{0}u)^{2} ) \\ \chi(u) &:= \mathrm{Tr}\, \mathbf{\Gamma}(u) \quad (u \in D). \end{split}\]
This indicator can check if \(\Gamma\) and \(\overline{\Gamma}\) are equivalent.

Case: \(\xi^{\alpha} = 1\)#

In this case, \(\Gamma\) and \(\overline{\Gamma}\) are equivalent. Let \(\mathbf{U}\) be a unitary intertwiner between \(\Gamma\) and \(\overline{\Gamma}\):

\[ \overline{\mathbf{\Gamma}}(u) = \mathbf{U}^{-1} \mathbf{\Gamma}(u) \mathbf{U} \quad (u \in D). \]
Then, a transformed basis \(\{ \mathbf{\psi}_{i} := \sum_{j} a_{0} \mathbf{\phi}_{j} [\mathbf{U}^{\dagger}]_{ji} \}_{i}\) also forms \(\Gamma\).

A new basis \(\{ \frac{1}{\sqrt{2}}(\phi_{i} + \psi_{i}) \}_{i}\) gives the following irrep [2]:

\[\begin{split} \tilde{\mathbf{\Gamma}}(u) &= \mathbf{\Gamma}(u) \\ \tilde{\mathbf{\Gamma}}(a_{0}) &= \mathbf{U} \\ \tilde{\mathbf{\Gamma}}(a_{0}u) &= \omega(a_{0}, u)^{\ast} \tilde{\mathbf{\Gamma}}(a_{0}) \tilde{\mathbf{\Gamma}}(u) \\ \mathbf{U}\mathbf{U}^{\ast} &= \omega(a_{0}, a_{0})\Gamma(a_{0}^{2}). \end{split}\]

Case: \(\xi^{\alpha} = -1\)#

In this case, \(\Gamma\) and \(\overline{\Gamma}\) are equivalent. Let \(\mathbf{U}\) be a unitary intertwiner between \(\Gamma\) and \(\overline{\Gamma}\):

\[\begin{split} \overline{\Gamma}(u) &= \mathbf{U}^{-1} \Gamma(u) \mathbf{U} \quad (u \in D) \\ \mathbf{U}\mathbf{U}^{\ast} &= -\omega(a_{0}, a_{0})\Gamma(a_{0}^{2}). \end{split}\]

We can take \((\mathbf{\phi}_{1}, \cdots, \mathbf{\phi}_{d}, \mathbf{\psi}_{1}, \cdots, \mathbf{\psi}_{d})\) as basis and they form irrep of \(M\) as

\[\begin{split} \tilde{\mathbf{\Gamma}}(u) &= \begin{pmatrix} \mathbf{\Gamma}(u) & \mathbf{0} \\ \mathbf{0} & \overline{\mathbf{\Gamma}}(u) \\ \end{pmatrix} \\ \tilde{\mathbf{\Gamma}}(a_{0}) &= \begin{pmatrix} \mathbf{0} & -\mathbf{U} \\ \mathbf{U} & \mathbf{0} \\ \end{pmatrix} \\ \tilde{\mathbf{\Gamma}}(a_{0}u) &= \omega(a_{0}, u)^{\ast} \tilde{\mathbf{\Gamma}}(a_{0}) \tilde{\mathbf{\Gamma}}(u) \end{split}\]

Case: \(\xi^{\alpha} = 0\)#

In this case, \(\Gamma\) and \(\overline{\Gamma}\) are not equivalent. We can take \((\mathbf{\phi}_{1}, \cdots, \mathbf{\phi}_{d}, a_{0}\mathbf{\phi}_{1}, \cdots, a_{0}\mathbf{\phi}_{d})\) as basis and they form irrep of \(M\) as

\[\begin{split} \tilde{\mathbf{\Gamma}}(u) &= \begin{pmatrix} \mathbf{\Gamma}(u) & \mathbf{0} \\ \mathbf{0} & \overline{\mathbf{\Gamma}}(u) \\ \end{pmatrix} \\ \tilde{\mathbf{\Gamma}}(a_{0}) &= \begin{pmatrix} \mathbf{0} & \omega(a_{0}, a_{0}) \mathbf{\Gamma}(a_{0}^{2}) \\ \mathbf{1} & \mathbf{0} \\ \end{pmatrix} \\ \tilde{\mathbf{\Gamma}}(a_{0}u) &= \omega(a_{0}, u)^{\ast} \tilde{\mathbf{\Gamma}}(a_{0}) \tilde{\mathbf{\Gamma}}(u) \end{split}\]

Convention of anti-linear operators in spgrep#

Let \(M\) be magnetic point group other than type I. Let \(D\) be a maximal point subgroup of \(M\). Then, \(M\) can be decomposed as \(M = D \sqcup D a_{0}\), where \(a_{0} = \mathbf{S}_{0} 1'\) is an antisymmetry operation. We choose the following convention for choosing unitary or anti-unitary matrices for \(M\):

\[\begin{split} D \ni \mathbf{S} &\mapsto \mathbf{U}(\mathbf{S}) \\ D a_{0} \ni \mathbf{S}1' &\mapsto \mathbf{U}(\mathbf{S}) \left( -i \sigma_{y} \right) K, % a_{0} &\mapsto \mathbf{U}(\mathbf{S}_{0}) \left( -i \sigma_{y} \right) K \\ % a_{0} D \ni a_{0} \mathbf{S} &\mapsto \mathbf{U}(\mathbf{S}_{0}) \left( -i \sigma_{y} \right) \mathbf{U}(\mathbf{S})^{\ast} K, \end{split}\]
where \(\mathbf{U}: \mathrm{O}(3) \to \mathrm{SU}(2)\) is defined here. \(\sigma_{y}\) is the Pauli matrix. \(K\) is an anti-linear operator that takes complex conjugate.

References#

[WPV18]

Haruki Watanabe, Hoi Chun Po, and Ashvin Vishwanath. Structure and topology of band structures in the 1651 magnetic space groups. Sci. Adv., 4(8):eaat8685, 2018. URL: https://www.science.org/doi/abs/10.1126/sciadv.aat8685, doi:10.1126/sciadv.aat8685.

[Wig59]

Eugene Wigner. Group theory: and its application to the quantum mechanics of atomic spectra. Elsevier, 1959.