Pointgroup#
- spgrep.pointgroup.get_pointgroup_chain_generators(prim_rotations)[source]#
Calculate generators of given crystallographic point group in primitive basis.
The returned generators give a normal series whose factor groups are all Abelian.
- Parameters:
prim_rotations ((order, 3, 3))
- Returns:
generators – Let \(G_{0} := G\) and \(G_{i} := G_{i-1} / \langle\)
solvable_chain_generators[i]
\(\rangle\) (i = 0, 1, …). Then, \(G_{i}\) is normal subgroup of \(G_{i-1}\) and factor group \(G_{i-1}/G_{i}\) is Abelian.- Return type:
list[int]