Pointgroup

Pointgroup#

spgrep.pointgroup.get_pointgroup_chain_generators(prim_rotations)[source]#

Calculate generators of given crystallographic point group in primitive basis.

The returned generators give a normal series whose factor groups are all Abelian.

Parameters:

prim_rotations ((order, 3, 3))

Returns:

generators – Let \(G_{0} := G\) and \(G_{i} := G_{i-1} / \langle\) solvable_chain_generators[i] \(\rangle\) (i = 0, 1, …). Then, \(G_{i}\) is normal subgroup of \(G_{i-1}\) and factor group \(G_{i-1}/G_{i}\) is Abelian.

Return type:

list[int]