Spin representation#

A spin representation is a projective representation with a factor system for spinor wave functions. Here, we give the convention to choose the factor system for spinor in spgrep.

Factor system for spinor#

Symmetry operation of the first kind#

The map \(\mathrm{SO}(3) \ni \mathbf{R}_{ \theta\hat{\mathbf{n}} } \mapsto \mathbf{U} ( \mathbf{R}_{ \theta\hat{\mathbf{n}} } ) := \exp \left( -\frac{i}{2}\theta \hat{\mathbf{n}} \cdot \mathbf{\sigma} \right) \in \mathrm{SU}(2)\) is not surjective, where \(\mathbf{\sigma}_{i} \, (i=x,y,z)\) are Pauli matrices

\[\begin{split} \mathbf{\sigma}_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix}, \mathbf{\sigma}_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \\ \end{pmatrix}, \mathbf{\sigma}_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ \end{pmatrix}. \end{split}\]
In fact, \(\mathbf{R}_{\theta\hat{\mathbf{n}}}\) and \(\mathbf{R}_{2\pi - \theta, -\hat{\mathbf{n}}}\) represents the identical rotation. However they gives different unitary matrices with opposite signs. We choose either of the unitary matices for each rotations as convention. In particular, we choose \(\theta=0\) for identity \(\mathbf{E}\). We define a factor system from the ambiguity as
\[ \mathbf{U}(\mathbf{R}) \mathbf{U}(\mathbf{R}') =: z(\mathbf{R}, \mathbf{R}') \mathbf{U}(\mathbf{R}\mathbf{R}') \quad (\mathbf{R}, \mathbf{R}' \in \mathrm{SO}(3)). \]
In our convention, \(z(\mathbf{E}, \mathbf{R}) = z(\mathbf{R}, \mathbf{E}) = 1 \,(\forall \mathbf{R} \in \mathrm{SO}(3))\). Also, this representation matrix adapts Condon-Shortley phase.

We define the action of a symmetry operation of the first kind on spinor as

\[\begin{split} \left[ (\mathbf{R}, \mathbf{v}) \mathbf{\Psi} \right] (\mathbf{r}) &:= \mathbf{U}( \mathbf{R} ) \mathbf{\Psi}( (\mathbf{R}, \mathbf{v})^{-1} \mathbf{r}) \\ \Rightarrow \left[ g_{1} \left[ g_{2} \mathbf{\Psi} \right] \right](\mathbf{r}) &= \mathbf{U}(\mathbf{p}_{g_{1}}) \left[ g_{2} \mathbf{\Psi} \right](g_{1}^{-1}\mathbf{r}) \\ &= z(\mathbf{p}_{g_{1}}, \mathbf{p}_{g_{2}}) \left[ (g_{1}g_{2}) \mathbf{\Psi} \right](\mathbf{r}). \end{split}\]

Consider Bloch function with \(\mathbf{k}\)

\[ \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r}) = e^{ i \mathbf{k} \cdot \mathbf{r} } \mathbf{u}_{\mathbf{k}}(\mathbf{r}), \]
where \(\mathbf{u}_{\mathbf{k}}(\mathbf{r})\) is periodic w.r.t. lattice translations \(L_{\mathcal{T}}\). The Bloch function forms an irreps of translation subgroup \(\mathcal{T}\) of space group \(\mathcal{G}\):
\[\begin{split} (\mathbf{E}, \mathbf{t}) \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r}) &= \mathbf{\Psi}( (\mathbf{E}, \mathbf{t})^{-1} \mathbf{r}) \\ &= e^{ -i \mathbf{k} \cdot \mathbf{t} } \mathbf{\Psi}(\mathbf{r}) \quad (\mathbf{t} \in L_{\mathcal{T}}). \end{split}\]

A transformed Bloch function \((\mathbf{R}, \mathbf{v}) \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r})\) is a Bloch function with \(\mathbf{Rk}\):

\[\begin{split} (\mathbf{E}, \mathbf{t}) (\mathbf{R}, \mathbf{v}) \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r}) &= (\mathbf{R}, \mathbf{v}) (\mathbf{E}, \mathbf{R}^{-1}\mathbf{t}) \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r}) \quad (\because z(\mathbf{E}, \mathbf{R}) = z(\mathbf{R}, \mathbf{E}) = 1 ) \\ &= \exp \left( -i \mathbf{k} \cdot \mathbf{R}^{-1} \mathbf{t} \right) (\mathbf{R}, \mathbf{v}) \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r}) \\ &= \exp \left( -i \mathbf{Rk} \cdot \mathbf{t} \right) (\mathbf{R}, \mathbf{v}) \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r}) \quad (\because \mathbf{R} \in \mathrm{SO}(3) ). \end{split}\]

Let \(\Gamma^{\mathbf{k}\alpha}\) be a projective irrep of the little group \(\mathcal{G}^{\mathbf{k}} = \coprod_{ \{ i \mid \mathbf{S}_{i} \in \overline{\mathcal{G}}^{\mathbf{k}} \} } (\mathbf{S}_{i}, \mathbf{w}_{i}) \mathcal{T}\) and \(\{ \mathbf{\Psi}^{\mathbf{k}\alpha}_{\mu} \}_{\mu=1}^{d_{\mathbf{k}\alpha}}\) form the projective irrep. For \(\mathbf{S}_{i} \mathbf{S}_{j} = \mathbf{S}_{k}\),

\[\begin{split} &\sum_{\mu} \mathbf{\Psi}^{\mathbf{k}\alpha}_{\mu} \left[ \mathbf{\Gamma}^{\mathbf{k}\alpha}((\mathbf{S}_{i}, \mathbf{w}_{i})) \mathbf{\Gamma}^{\mathbf{k}\alpha}((\mathbf{S}_{j}, \mathbf{w}_{j})) \right]_{\mu\nu} \\ &= (\mathbf{S}_{i}, \mathbf{w}_{i}) \left( (\mathbf{S}_{j}, \mathbf{w}_{j}) \mathbf{\Psi}^{\mathbf{k}\alpha}_{\nu} \right) \\ &= \frac{ z(\mathbf{S}_{i}, \mathbf{S}_{j}) }{ z(\mathbf{E}, \mathbf{S}_{k}) } (\mathbf{S}_{k}, \mathbf{w}_{k}) \left( (\mathbf{E}, \mathbf{S}_{k}^{-1} (\mathbf{S}_{i}\mathbf{w}_{j} + \mathbf{w}_{i} - \mathbf{w}_{k} ) ) \mathbf{\Psi}^{\mathbf{k}\alpha}_{\nu} \right) \\ &= \sum_{\mu} \mathbf{\Psi}^{\mathbf{k}\alpha}_{\mu} z(\mathbf{S}_{i}, \mathbf{S}_{j}) e^{-i\mathbf{k}\cdot \left( \mathbf{S}_{i}\mathbf{w}_{j} + \mathbf{w}_{i} - \mathbf{w}_{k} \right) } \mathbf{\Gamma}^{\mathbf{k}\alpha}((\mathbf{S}_{k}, \mathbf{w}_{k})) \quad (\because z(\mathbf{E}, \mathbf{S}_{k}) = 1, \mathbf{S}_{k} \in \overline{\mathcal{G}}^{\mathbf{k}}). \end{split}\]

Then, Simplifying by

\[\begin{split} \mathbf{\Gamma}^{\mathbf{k}\alpha}((\mathbf{R}, \mathbf{v})) &=: e^{ -i \mathbf{k} \cdot \mathbf{v} } \mathbf{D}^{\mathbf{k}\alpha}((\mathbf{R}, \mathbf{v})) \\ \mathbf{D}^{\mathbf{k}\alpha}((\mathbf{S}_{i}, \mathbf{w}_{i})) \mathbf{D}^{\mathbf{k}\alpha}((\mathbf{S}_{j}, \mathbf{w}_{j})) &= z(\mathbf{S}_{i}, \mathbf{S}_{j}) e^{ -i \mathbf{g}_{i} \cdot \mathbf{w}_{j} } \mathbf{D}^{\mathbf{k}\alpha}((\mathbf{S}_{k}, \mathbf{w}_{k})), \end{split}\]
where \(\mathbf{g}_{i} = \mathbf{S}_{i}^{-1} \mathbf{k} - \mathbf{k}\). We can enumerate projective irreps for spinor from the factor system \(\mu_{\mathbf{k}}(S_{i}, S_{j}) := z(\mathbf{S}_{i}, \mathbf{S}_{j}) \exp \left( -i \mathbf{g}_{i} \cdot \mathbf{w}_{j} \right)\).

Symmetry operation of the second kind#

We assume the inversion \(\mathbf{I}\) acts on spin functions as

\[\begin{split} \mathbf{I} \ket{\uparrow} &= \ket{\uparrow} \\ \mathbf{I} \ket{\downarrow} &= \ket{\downarrow}, \end{split}\]
which is known as Pauli gauge [Alt05]. In this convention, we can choose factor system as follows:
\[\begin{split} z(\mathbf{I}, \mathbf{I}) &= 1 \\ z(\mathbf{R}, \mathbf{I}\mathbf{R}') &= z(\mathbf{IR}, \mathbf{R}') = z(\mathbf{IR}, \mathbf{I}\mathbf{R}') = z(\mathbf{R}, \mathbf{R}') \quad (\mathbf{R}, \mathbf{R}' \in \mathrm{SO}(3)). \end{split}\]

Convention of rotations for spinor#

A rotation \(\mathbf{R}_{ \theta\hat{\mathbf{n}} } \in \mathrm{SO}(3)\) can be written with angular momentum operators:

\[\begin{split} \mathbf{R}_{ \theta\hat{\mathbf{n}} } &= \exp \left( -i \theta \hat{\mathbf{n}} \cdot \mathbf{L} \right) \\ &= \begin{pmatrix} \cos \theta + n_{x}^{2} (1 - \cos \theta) & n_{x} n_{y} (1 - \cos \theta) - n_{z} \sin \theta & n_{x} n_{z} (1 - \cos \theta) + n_{y} \sin \theta \\ n_{y} n_{x} (1 - \cos \theta) + n_{z} \sin \theta & \cos \theta + n_{y}^{2} (1 - \cos \theta) & n_{y} n_{z} (1 - \cos \theta) - n_{x} \sin \theta \\ n_{z} n_{x} (1 - \cos \theta) - n_{y} \sin \theta & n_{z} n_{y} (1 - \cos \theta) + n_{x} \sin \theta & \cos \theta + n_{z}^{2} (1 - \cos \theta) \\ \end{pmatrix} \\ \mathbf{L}_{x} &:= -i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \\ \end{pmatrix} \\ \mathbf{L}_{y} &:= -i \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix} \\ \mathbf{L}_{z} &:= -i \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix} \\ \end{split}\]

The axis and angle of \(\mathbf{R}_{ \theta\hat{\mathbf{n}} }\) are interpret by the following relations:

\[\begin{split} \mathbf{R}_{f} &:= \mathbf{A}^{-1} \mathbf{R}_{ \theta\hat{\mathbf{n}} } \mathbf{A} \quad \in \mathrm{SL}(3) \\ \mathrm{tr} \mathbf{R}_{ \theta\hat{\mathbf{n}} } &= 2 \cos \theta + 1 \\ \end{split}\]

\[\begin{split} \begin{pmatrix} [R_{ \theta\hat{\mathbf{n}} }]_{23} - [R_{ \theta\hat{\mathbf{n}} }]_{32} \\ [R_{ \theta\hat{\mathbf{n}} }]_{31} - [R_{ \theta\hat{\mathbf{n}} }]_{13} \\ [R_{ \theta\hat{\mathbf{n}} }]_{12} - [R_{ \theta\hat{\mathbf{n}} }]_{21} \\ \end{pmatrix} = -2 (\sin \theta) \hat{\mathbf{n}} \end{split}\]

The corresponding unitary rotation is explicitly written as

\[\begin{split} \mathbf{U} ( \mathbf{R}_{ \theta\hat{\mathbf{n}} } ) &= \exp \left( -\frac{i}{2}\theta \hat{\mathbf{n}} \cdot \mathbf{\sigma} \right) \\ &= \mathbf{1} \cos \frac{\theta}{2} - i (\hat{\mathbf{n}} \cdot \mathbf{\sigma}) \sin \frac{\theta}{2} \\ &= \begin{pmatrix} \cos \frac{\theta}{2} - i n_{z} \sin \frac{\theta}{2} & (-i n_{x} - n_{y}) \sin \frac{\theta}{2} \\ (-i n_{x} + n_{y}) \sin \frac{\theta}{2} & \cos \frac{\theta}{2} + i n_{z} \sin \frac{\theta}{2} \\ \end{pmatrix}. \end{split}\]

References#

[Alt05]

Simon L Altmann. Rotations, quaternions, and double groups. Courier Corporation, 2005.