Symmetry operation of the first kind
The map \(\mathrm{SO}(3) \ni \mathbf{R}_{ \theta\hat{\mathbf{n}} } \mapsto \mathbf{U} ( \mathbf{R}_{ \theta\hat{\mathbf{n}} } ) := \exp \left( -\frac{i}{2}\theta \hat{\mathbf{n}} \cdot \mathbf{\sigma} \right) \in \mathrm{SU}(2)\) is not surjective, where \(\mathbf{\sigma}_{i} \, (i=x,y,z)\) are Pauli matrices
\[\begin{split}
\mathbf{\sigma}_{x}
= \begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix},
\mathbf{\sigma}_{y}
= \begin{pmatrix}
0 & -i \\
i & 0 \\
\end{pmatrix},
\mathbf{\sigma}_{z}
= \begin{pmatrix}
1 & 0 \\
0 & -1 \\
\end{pmatrix}.
\end{split}\]
In fact, \(\mathbf{R}_{\theta\hat{\mathbf{n}}}\) and \(\mathbf{R}_{2\pi - \theta, -\hat{\mathbf{n}}}\) represents the identical rotation.
However they gives different unitary matrices with opposite signs.
We choose either of the unitary matices for each rotations as convention.
In particular, we choose \(\theta=0\) for identity \(\mathbf{E}\).
We define a factor system from the ambiguity as
\[
\mathbf{U}(\mathbf{R}) \mathbf{U}(\mathbf{R}')
=: z(\mathbf{R}, \mathbf{R}') \mathbf{U}(\mathbf{R}\mathbf{R}')
\quad (\mathbf{R}, \mathbf{R}' \in \mathrm{SO}(3)).
\]
In our convention, \(z(\mathbf{E}, \mathbf{R}) = z(\mathbf{R}, \mathbf{E}) = 1 \,(\forall \mathbf{R} \in \mathrm{SO}(3))\).
Also, this representation matrix adapts Condon-Shortley phase.
We define the action of a symmetry operation of the first kind on spinor as
\[\begin{split}
\left[ (\mathbf{R}, \mathbf{v}) \mathbf{\Psi} \right] (\mathbf{r})
&:= \mathbf{U}( \mathbf{R} ) \mathbf{\Psi}( (\mathbf{R}, \mathbf{v})^{-1} \mathbf{r}) \\
\Rightarrow \left[ g_{1} \left[ g_{2} \mathbf{\Psi} \right] \right](\mathbf{r})
&= \mathbf{U}(\mathbf{p}_{g_{1}}) \left[ g_{2} \mathbf{\Psi} \right](g_{1}^{-1}\mathbf{r}) \\
&= z(\mathbf{p}_{g_{1}}, \mathbf{p}_{g_{2}}) \left[ (g_{1}g_{2}) \mathbf{\Psi} \right](\mathbf{r}).
\end{split}\]
Consider Bloch function with \(\mathbf{k}\)
\[
\mathbf{\Psi}_{\mathbf{k}}(\mathbf{r}) = e^{ i \mathbf{k} \cdot \mathbf{r} } \mathbf{u}_{\mathbf{k}}(\mathbf{r}),
\]
where \(\mathbf{u}_{\mathbf{k}}(\mathbf{r})\) is periodic w.r.t. lattice translations \(L_{\mathcal{T}}\).
The Bloch function forms an irreps of translation subgroup \(\mathcal{T}\) of space group \(\mathcal{G}\):
\[\begin{split}
(\mathbf{E}, \mathbf{t}) \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r})
&= \mathbf{\Psi}( (\mathbf{E}, \mathbf{t})^{-1} \mathbf{r}) \\
&= e^{ -i \mathbf{k} \cdot \mathbf{t} } \mathbf{\Psi}(\mathbf{r})
\quad (\mathbf{t} \in L_{\mathcal{T}}).
\end{split}\]
A transformed Bloch function \((\mathbf{R}, \mathbf{v}) \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r})\) is a Bloch function with \(\mathbf{Rk}\):
\[\begin{split}
(\mathbf{E}, \mathbf{t}) (\mathbf{R}, \mathbf{v}) \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r})
&= (\mathbf{R}, \mathbf{v}) (\mathbf{E}, \mathbf{R}^{-1}\mathbf{t}) \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r})
\quad (\because z(\mathbf{E}, \mathbf{R}) = z(\mathbf{R}, \mathbf{E}) = 1 ) \\
&= \exp \left( -i \mathbf{k} \cdot \mathbf{R}^{-1} \mathbf{t} \right) (\mathbf{R}, \mathbf{v}) \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r}) \\
&= \exp \left( -i \mathbf{Rk} \cdot \mathbf{t} \right) (\mathbf{R}, \mathbf{v}) \mathbf{\Psi}_{\mathbf{k}}(\mathbf{r})
\quad (\because \mathbf{R} \in \mathrm{SO}(3) ).
\end{split}\]
Let \(\Gamma^{\mathbf{k}\alpha}\) be a projective irrep of the little group \(\mathcal{G}^{\mathbf{k}} = \coprod_{ \{ i \mid \mathbf{S}_{i} \in \overline{\mathcal{G}}^{\mathbf{k}} \} } (\mathbf{S}_{i}, \mathbf{w}_{i}) \mathcal{T}\) and \(\{ \mathbf{\Psi}^{\mathbf{k}\alpha}_{\mu} \}_{\mu=1}^{d_{\mathbf{k}\alpha}}\) form the projective irrep.
For \(\mathbf{S}_{i} \mathbf{S}_{j} = \mathbf{S}_{k}\),
\[\begin{split}
&\sum_{\mu} \mathbf{\Psi}^{\mathbf{k}\alpha}_{\mu} \left[ \mathbf{\Gamma}^{\mathbf{k}\alpha}((\mathbf{S}_{i}, \mathbf{w}_{i})) \mathbf{\Gamma}^{\mathbf{k}\alpha}((\mathbf{S}_{j}, \mathbf{w}_{j})) \right]_{\mu\nu} \\
&=
(\mathbf{S}_{i}, \mathbf{w}_{i}) \left( (\mathbf{S}_{j}, \mathbf{w}_{j}) \mathbf{\Psi}^{\mathbf{k}\alpha}_{\nu} \right) \\
&=
\frac{ z(\mathbf{S}_{i}, \mathbf{S}_{j}) }{ z(\mathbf{E}, \mathbf{S}_{k}) }
(\mathbf{S}_{k}, \mathbf{w}_{k})
\left( (\mathbf{E}, \mathbf{S}_{k}^{-1} (\mathbf{S}_{i}\mathbf{w}_{j} + \mathbf{w}_{i} - \mathbf{w}_{k} ) ) \mathbf{\Psi}^{\mathbf{k}\alpha}_{\nu} \right) \\
&=
\sum_{\mu} \mathbf{\Psi}^{\mathbf{k}\alpha}_{\mu}
z(\mathbf{S}_{i}, \mathbf{S}_{j})
e^{-i\mathbf{k}\cdot \left( \mathbf{S}_{i}\mathbf{w}_{j} + \mathbf{w}_{i} - \mathbf{w}_{k} \right) }
\mathbf{\Gamma}^{\mathbf{k}\alpha}((\mathbf{S}_{k}, \mathbf{w}_{k}))
\quad (\because z(\mathbf{E}, \mathbf{S}_{k}) = 1, \mathbf{S}_{k} \in \overline{\mathcal{G}}^{\mathbf{k}}).
\end{split}\]
Then, Simplifying by
\[\begin{split}
\mathbf{\Gamma}^{\mathbf{k}\alpha}((\mathbf{R}, \mathbf{v}))
&=: e^{ -i \mathbf{k} \cdot \mathbf{v} } \mathbf{D}^{\mathbf{k}\alpha}((\mathbf{R}, \mathbf{v})) \\
\mathbf{D}^{\mathbf{k}\alpha}((\mathbf{S}_{i}, \mathbf{w}_{i})) \mathbf{D}^{\mathbf{k}\alpha}((\mathbf{S}_{j}, \mathbf{w}_{j}))
&= z(\mathbf{S}_{i}, \mathbf{S}_{j}) e^{ -i \mathbf{g}_{i} \cdot \mathbf{w}_{j} } \mathbf{D}^{\mathbf{k}\alpha}((\mathbf{S}_{k}, \mathbf{w}_{k})),
\end{split}\]
where \(\mathbf{g}_{i} = \mathbf{S}_{i}^{-1} \mathbf{k} - \mathbf{k}\).
We can enumerate projective irreps for spinor from the factor system \(\mu_{\mathbf{k}}(S_{i}, S_{j}) := z(\mathbf{S}_{i}, \mathbf{S}_{j}) \exp \left( -i \mathbf{g}_{i} \cdot \mathbf{w}_{j} \right)\).